SpringBoot + Spring Data JPA金融项目(二)

2018/08/02

项目已上传github:https://github.com/tihomcode/tihom-finance


销售端

  • 与第三方交互的门户网关

  • 安全控制
  • 流量统计
  • 整合内部资源,对外提供接口

功能分析

  • 产品查询
  • 申购、赎回
  • 对账

JsonRpc

与Http和WebService对比

  • http较为复杂,需要发送请求、响应请求、解析等等工作

  • webservice 报文使用xml形式浪费带宽
  • grpc、thrift等性能高,不过写法复杂,要按它们要求的形式开发

其实这些框架万变不离其宗,不同的只是用法,哪个合适我们就选哪个

JsonRpc的github地址:https://github.com/briandilley/jsonrpc4j

经验:在写接口时注意请求对象非固定参数的话一般整合成对象,这样在后期更改等等都不需要去动接口

主要步骤

  • 在api模块中定义产品相关的rpc请求服务和请求对象
  • 在manager中的rpc包下实现api模块中的服务类
  • 在manager中的configuration包下实现RpcConfiguration将rpc相关配置交给spring管理

常见错误:

  • 在配置类中对应的配置内容未添加@Bean

  • application.yml中url的配置末尾要加/,Json

  • @JsonRpcService("rpc/products") //这里不能以/开始 例如 /products这是错误的(这里可以通过自己封装来配置)

  • 序列化和反序列化问题

  • Cannot determine embedded database driver class for database type NONE

    解决方案是配置一下在配置文件中配上dataSource相关就可以了

运行原理

先在application.yml中添加debug级别日志配置

logging:
  level:
    com.googlecode.jsonrpc4j: debug

在ProductRpcService中初始化一个加载即运行方法

@PostConstruct
public void init(){
	findOne("T001");
}

得出结果如下

根据我们配置的信息去扫描RPC的服务接口,然后去创建代理,执行的时候就是把我们的操作信息转化成json字符串的格式传递到服务端,然后服务端使用json字符串的形式返回来

客户端唯一的入口就是RpcConfiguration里面创建的代理类的创建对象AutoJsonRpcClientProxyCreator

客户端的实现
  • 扫描我们的包路径下面添加了JsonRpcService这个注解的接口

  • 创建一个代理对象,对应的路径就是基础地址+注解里面配置的地址

  • 通过objectMapper将参数信息转换成Json字符串

  • 通过http的形式传递到服务端

服务端的实现
  • 服务端的唯一 入口AutoJsonRpcServiceImplExporter,实现了BeanFactoryPostProcessor这个接口,会自动调用postProcessBeanFactory方法,这是spring的实现原理

总体流程概括

简化封装

  • 在seller和manager模块中都有JsonRpcConfiguration,在我的代码中这两处都被注释了,因为后面进行简化封装,但是为了让读者能感受到变化我就没删掉

  • 将两个模块中的JsonRpcConfiguration写在util(或者开一个jsonRpc的模块)的configuration/JsonRpcConfiguration中

    private static Logger LOG = LoggerFactory.getLogger(JsonRpcConfiguration.class);
      
        @Bean
        public AutoJsonRpcServiceImplExporter rpcServiceImplExporter(){
            return new AutoJsonRpcServiceImplExporter();
        }
      
        @Bean
        @ConditionalOnProperty(value = {"rpc.client.url","rpc.client.basePackage"}) //当配置文件中有这两个属性时才需要导出客户端
        public AutoJsonRpcClientProxyCreator rpcClientProxyCreator(@Value("${rpc.client.url}") String url,
                                                                   @Value("${rpc.client.basePackage}") String basePackage){
            AutoJsonRpcClientProxyCreator clientProxyCreator = new AutoJsonRpcClientProxyCreator();
            try {
                //配置基础url
                clientProxyCreator.setBaseUrl(new URL(url));
            } catch (MalformedURLException e) {
                LOG.error("创建rpc服务地址错误");
            }
            //让它扫描api下rpc服务的包
            clientProxyCreator.setScanPackage(basePackage);
            return clientProxyCreator;
        }
    
  • 然后把两个模块中的JsonRpcConfiguration删除

  • 在seller的application.yml中加上

    rpc:
      client:
        url: http://localhost:8081/manager/ #结尾记得加上/,否则会报错
        basePackage: com.tihom.api
    
  • 在resources/META-INF/spring.factories下

    org.springframework.boot.autoconfigure.EnableAutoConfiguration =com.tihom.util.configuration.JsonRpcConfiguration
    
  • 注意:这里可能会报找不到productRpc的错误,解决方案就是在api模块中加上对util模块的依赖即可


缓存

  • 产品查询
    • 请求频繁、变更少
    • 减少数据库压力
    • 提高响应速度
    • 将产品数据放在销售端,不要每次都去管理端查询产品,直接在内存中读取数据
  • 流行框架
    • memcache 最早 结构单一 k/v
    • redis 数据结构多、持久化
    • hazelcast 数据结构更多、功能更多、集群更方便、管理界面更好、spring整合方便

安装

添加依赖

<!-- hazelcast缓存 -->
<dependency>
    <groupId>com.hazelcast</groupId>
    <artifactId>hazelcast</artifactId>
    <version>3.10.4</version>
</dependency>

将下图xml中内容复制到seller模块的resources下的hazelcast.xml中

<?xml version="1.0" encoding="UTF-8"?>
<!--
  ~ Copyright (c) 2008-2018, Hazelcast, Inc. All Rights Reserved.
  ~
  ~ Licensed under the Apache License, Version 2.0 (the "License");
  ~ you may not use this file except in compliance with the License.
  ~ You may obtain a copy of the License at
  ~
  ~ http://www.apache.org/licenses/LICENSE-2.0
  ~
  ~ Unless required by applicable law or agreed to in writing, software
  ~ distributed under the License is distributed on an "AS IS" BASIS,
  ~ WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  ~ See the License for the specific language governing permissions and
  ~ limitations under the License.
  -->

<!--
    The default Hazelcast configuration. This is used when no hazelcast.xml is present.
    Please see the schema for how to configure Hazelcast at https://hazelcast.com/schema/config/hazelcast-config-3.10.xsd
    or the documentation at https://hazelcast.org/documentation/
-->
<!--suppress XmlDefaultAttributeValue -->
<hazelcast xmlns="http://www.hazelcast.com/schema/config"
           xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
           xsi:schemaLocation="http://www.hazelcast.com/schema/config
           http://www.hazelcast.com/schema/config/hazelcast-config-3.10.xsd">

    <group>
        <name>dev</name>
        <password>dev-pass</password>
    </group>
    <management-center enabled="true">http://localhost:8080/hazelcast-mancenter</management-center><!-- 这里改了 -->
    <network>
        <port auto-increment="true" port-count="100">5701</port>
        <outbound-ports>
            <!--
            Allowed port range when connecting to other nodes.
            0 or * means use system provided port.
            -->
            <ports>0</ports>
        </outbound-ports>
        <join>
            <!-- 集群方式1 -->
            <multicast enabled="true">
                <multicast-group>224.2.2.3</multicast-group>
                <multicast-port>54327</multicast-port>
            </multicast>
            <!-- 集群方式2 -->
            <tcp-ip enabled="false">
                <interface>127.0.0.1</interface>
                <member-list>
                    <member>127.0.0.1</member>
                </member-list>
            </tcp-ip>
            <aws enabled="false">
                <access-key>my-access-key</access-key>
                <secret-key>my-secret-key</secret-key>
                <!--optional, default is us-east-1 -->
                <region>us-west-1</region>
                <!--optional, default is ec2.amazonaws.com. If set, region shouldn't be set as it will override this property -->
                <host-header>ec2.amazonaws.com</host-header>
                <!-- optional, only instances belonging to this group will be discovered, default will try all running instances -->
                <security-group-name>hazelcast-sg</security-group-name>
                <tag-key>type</tag-key>
                <tag-value>hz-nodes</tag-value>
            </aws>
            <discovery-strategies>
            </discovery-strategies>
        </join>
        <interfaces enabled="false">
            <interface>10.10.1.*</interface>
        </interfaces>
        <ssl enabled="false"/>
        <socket-interceptor enabled="false"/>
        <symmetric-encryption enabled="false">
            <!--
               encryption algorithm such as
               DES/ECB/PKCS5Padding,
               PBEWithMD5AndDES,
               AES/CBC/PKCS5Padding,
               Blowfish,
               DESede
            -->
            <algorithm>PBEWithMD5AndDES</algorithm>
            <!-- salt value to use when generating the secret key -->
            <salt>thesalt</salt>
            <!-- pass phrase to use when generating the secret key -->
            <password>thepass</password>
            <!-- iteration count to use when generating the secret key -->
            <iteration-count>19</iteration-count>
        </symmetric-encryption>
        <failure-detector>
            <icmp enabled="false"></icmp>
        </failure-detector>
    </network>
    <partition-group enabled="false"/>
    <executor-service name="default">
        <pool-size>16</pool-size>
        <!--Queue capacity. 0 means Integer.MAX_VALUE.-->
        <queue-capacity>0</queue-capacity>
    </executor-service>
    <security>
        <client-block-unmapped-actions>true</client-block-unmapped-actions>
    </security>
    <queue name="default">
        <!--
            Maximum size of the queue. When a JVM's local queue size reaches the maximum,
            all put/offer operations will get blocked until the queue size
            of the JVM goes down below the maximum.
            Any integer between 0 and Integer.MAX_VALUE. 0 means
            Integer.MAX_VALUE. Default is 0.
        -->
        <max-size>0</max-size>
        <!--
            Number of backups. If 1 is set as the backup-count for example,
            then all entries of the map will be copied to another JVM for
            fail-safety. 0 means no backup.
        -->
        <backup-count>1</backup-count>

        <!--
            Number of async backups. 0 means no backup.
        -->
        <async-backup-count>0</async-backup-count>

        <empty-queue-ttl>-1</empty-queue-ttl>

        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </queue>
    <map name="default">
        <!--
           Data type that will be used for storing recordMap.
           Possible values:
           BINARY (default): keys and values will be stored as binary data
           OBJECT : values will be stored in their object forms
           NATIVE : values will be stored in non-heap region of JVM
        -->
        <in-memory-format>BINARY</in-memory-format>

        <!--
            Number of backups. If 1 is set as the backup-count for example,
            then all entries of the map will be copied to another JVM for
            fail-safety. 0 means no backup.
        -->
        <backup-count>1</backup-count>
        <!--
            Number of async backups. 0 means no backup.
        -->
        <async-backup-count>0</async-backup-count>
        <!--
            Maximum number of seconds for each entry to stay in the map. Entries that are
            older than <time-to-live-seconds> and not updated for <time-to-live-seconds>
            will get automatically evicted from the map.
            Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0
        -->
        <time-to-live-seconds>0</time-to-live-seconds>
        <!--
            Maximum number of seconds for each entry to stay idle in the map. Entries that are
            idle(not touched) for more than <max-idle-seconds> will get
            automatically evicted from the map. Entry is touched if get, put or containsKey is called.
            Any integer between 0 and Integer.MAX_VALUE. 0 means infinite. Default is 0.
        -->
        <max-idle-seconds>0</max-idle-seconds>
        <!--
            Valid values are:
            NONE (no eviction),
            LRU (Least Recently Used),
            LFU (Least Frequently Used).
            NONE is the default.
        -->
        <eviction-policy>NONE</eviction-policy>
        <!--
            Maximum size of the map. When max size is reached,
            map is evicted based on the policy defined.
            Any integer between 0 and Integer.MAX_VALUE. 0 means
            Integer.MAX_VALUE. Default is 0.
        -->
        <max-size policy="PER_NODE">0</max-size>
        <!--
            `eviction-percentage` property is deprecated and will be ignored when it is set.

            As of version 3.7, eviction mechanism changed.
            It uses a probabilistic algorithm based on sampling. Please see documentation for further details
        -->
        <eviction-percentage>25</eviction-percentage>
        <!--
            `min-eviction-check-millis` property is deprecated  and will be ignored when it is set.

            As of version 3.7, eviction mechanism changed.
            It uses a probabilistic algorithm based on sampling. Please see documentation for further details
        -->
        <min-eviction-check-millis>100</min-eviction-check-millis>
        <!--
            While recovering from split-brain (network partitioning),
            map entries in the small cluster will merge into the bigger cluster
            based on the policy set here. When an entry merge into the
            cluster, there might an existing entry with the same key already.
            Values of these entries might be different for that same key.
            Which value should be set for the key? Conflict is resolved by
            the policy set here. Default policy is PutIfAbsentMapMergePolicy

            There are built-in merge policies such as
            com.hazelcast.map.merge.PassThroughMergePolicy; entry will be overwritten if merging entry exists for the key.
            com.hazelcast.map.merge.PutIfAbsentMapMergePolicy ; entry will be added if the merging entry doesn't exist in the cluster.
            com.hazelcast.map.merge.HigherHitsMapMergePolicy ; entry with the higher hits wins.
            com.hazelcast.map.merge.LatestUpdateMapMergePolicy ; entry with the latest update wins.
        -->
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>

        <!--
           Control caching of de-serialized values. Caching makes query evaluation faster, but it cost memory.
           Possible Values:
                        NEVER: Never cache deserialized object
                        INDEX-ONLY: Caches values only when they are inserted into an index.
                        ALWAYS: Always cache deserialized values.
        -->
        <cache-deserialized-values>INDEX-ONLY</cache-deserialized-values>

    </map>

    <!--
           Configuration for an event journal. The event journal keeps events related
           to a specific partition and data structure. For instance, it could keep
           map add, update, remove, merge events along with the key, old value, new value and so on.
        -->
    <event-journal enabled="false">
        <mapName>mapName</mapName>
        <capacity>10000</capacity>
        <time-to-live-seconds>0</time-to-live-seconds>
    </event-journal>

    <event-journal enabled="false">
        <cacheName>cacheName</cacheName>
        <capacity>10000</capacity>
        <time-to-live-seconds>0</time-to-live-seconds>
    </event-journal>

    <multimap name="default">
        <backup-count>1</backup-count>
        <value-collection-type>SET</value-collection-type>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </multimap>

    <replicatedmap name="default">
        <in-memory-format>OBJECT</in-memory-format>
        <async-fillup>true</async-fillup>
        <statistics-enabled>true</statistics-enabled>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </replicatedmap>

    <list name="default">
        <backup-count>1</backup-count>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </list>

    <set name="default">
        <backup-count>1</backup-count>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </set>

    <jobtracker name="default">
        <max-thread-size>0</max-thread-size>
        <!-- Queue size 0 means number of partitions * 2 -->
        <queue-size>0</queue-size>
        <retry-count>0</retry-count>
        <chunk-size>1000</chunk-size>
        <communicate-stats>true</communicate-stats>
        <topology-changed-strategy>CANCEL_RUNNING_OPERATION</topology-changed-strategy>
    </jobtracker>

    <semaphore name="default">
        <initial-permits>0</initial-permits>
        <backup-count>1</backup-count>
        <async-backup-count>0</async-backup-count>
    </semaphore>

    <reliable-topic name="default">
        <read-batch-size>10</read-batch-size>
        <topic-overload-policy>BLOCK</topic-overload-policy>
        <statistics-enabled>true</statistics-enabled>
    </reliable-topic>

    <ringbuffer name="default">
        <capacity>10000</capacity>
        <backup-count>1</backup-count>
        <async-backup-count>0</async-backup-count>
        <time-to-live-seconds>0</time-to-live-seconds>
        <in-memory-format>BINARY</in-memory-format>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </ringbuffer>

    <flake-id-generator name="default">
        <prefetch-count>100</prefetch-count>
        <prefetch-validity-millis>600000</prefetch-validity-millis>
        <id-offset>0</id-offset>
        <node-id-offset>0</node-id-offset>
        <statistics-enabled>true</statistics-enabled>
    </flake-id-generator>

    <atomic-long name="default">
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </atomic-long>

    <atomic-reference name="default">
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </atomic-reference>

    <count-down-latch name="default"/>

    <serialization>
        <portable-version>0</portable-version>
    </serialization>

    <services enable-defaults="true"/>

    <lite-member enabled="false"/>

    <cardinality-estimator name="default">
        <backup-count>1</backup-count>
        <async-backup-count>0</async-backup-count>
        <merge-policy batch-size="100">HyperLogLogMergePolicy</merge-policy>
    </cardinality-estimator>

    <scheduled-executor-service name="default">
        <capacity>100</capacity>
        <durability>1</durability>
        <pool-size>16</pool-size>
        <merge-policy batch-size="100">com.hazelcast.spi.merge.PutIfAbsentMergePolicy</merge-policy>
    </scheduled-executor-service>

    <crdt-replication>
        <replication-period-millis>1000</replication-period-millis>
        <max-concurrent-replication-targets>1</max-concurrent-replication-targets>
    </crdt-replication>

    <pn-counter name="default">
        <replica-count>2147483647</replica-count>
        <statistics-enabled>true</statistics-enabled>
    </pn-counter>
</hazelcast>

然后运行manager和seller,上官网下载管理页面工具包Management Center 3.10.2 下载后解压

进入文件夹,shift+右键在此处创建命令行工具,直接运行start.bat

有这样的显示表示成功了

测试功能

在seller包下直接定义一个HazelcastMapTest类

@Component
public class HazelcastMapTest {

    @Autowired
    private HazelcastInstance hazelcastInstance;

    @PostConstruct
    public void put(){
        Map map = hazelcastInstance.getMap("tihom");
        map.put("name","tihom");
    }

}

运行manager和seller,打开管理工具查看

Map Config的配置在hazelcast.xml中可以自定义配置,具体配置自行谷歌或百度

整合

添加依赖包

<!-- hazelcast缓存 -->
<dependency>
    <groupId>com.hazelcast</groupId>
    <artifactId>hazelcast-spring</artifactId>
    <version>3.10.4</version>
</dependency>

在seller的application.yml中

spring:
  cache:
	type: hazelcast

重构代码

创建一个新的类ProductCache,以后调用方法都先经过这个类,ProductRpcReq中直接调用ProductCache中方法即可

/**
 * 产品缓存
 * @author TiHom
 * create at 2018/8/4 0004.
 */

@Component
public class ProductCache {
    static final String CACHE_NAME = "tihom_product";

    private static Logger LOG  = LoggerFactory.getLogger(ProductCache.class);

    @Autowired
    private ProductRpc productRpc;

    @Autowired
    private HazelcastInstance hazelcastInstance;

    public List<Product> readAllCache(){
        //获取缓存中的map
        Map map = hazelcastInstance.getMap(CACHE_NAME);
        List<Product> products = null;
        //如果map中有数据,则从缓存中读取数据
        if(map.size()>0){
            products = new ArrayList<>();
            products.addAll(map.values());
        } else {
            products = findAll();
        }
        return products;
    }

    public List<Product> findAll(){
        ProductRpcReq req = new ProductRpcReq();
        List<String> status = new ArrayList<>();
        status.add(ProductStatus.IN_SELL.name());

        req.setStatusList(status);
        LOG.info("rpc查询全部产品,请求:{}",req);
        List<Product> result = productRpc.query(req);
        LOG.info("rpc查询全部产品,结果:{}",result);
        return result;
    }
    /**
     * 读取缓存(如果缓存中有了就直接从缓存拿,没有才去调用下面的方法)
     * @param id
     * @return
     */
    @Cacheable(cacheNames = CACHE_NAME)
    public Product readCache(String id){
        LOG.info("rpc查询单个产品,请求:{}",id);
        Product result = productRpc.findOne(id);
        LOG.info("rpc查询单个产品,结果:{}",result);
        return result;
    }

    /**
     * 更新缓存
     * @param product
     * @return
     */
    @CachePut(cacheNames = CACHE_NAME,key = "#product.id")  //把product.id作为key,Product作为value
    public Product putCache(Product product){
        return product;
    }

    /**
     * 清除缓存
     * @param id
     */
    @CacheEvict(cacheNames = CACHE_NAME) //通过id去缓存数据中查询,如果有就清除掉
    public void removeCache(String id){

    }
}

ProductRpcService类改变,之前的执行方法转移到ProductCache类中

/**
 * 产品相关服务
 * @author TiHom
 * create at 2018/8/3 0003.
 */

@Service
//实现ApplicationListener监听器接口,监听ContextRefreshedEvent事件,容器初始化完成后会触发事件
public class ProductRpcService implements ApplicationListener<ContextRefreshedEvent> {

    private static Logger LOG = LoggerFactory.getLogger(ProductRpcService.class);

    @Autowired
    private ProductRpc productRpc;
    @Autowired
    private ProductCache productCache;

    /**
     * 查询全部产品
     * @return
     */
    public List<Product> findAll(){
        return productCache.readAllCache();
    }

    public Product findOne(String id){
        Product product = productCache.readCache(id);
        if(product==null){
            productCache.removeCache(id);
        }
        return product;
    }

    @Override
    public void onApplicationEvent(ContextRefreshedEvent contextRefreshedEvent) {
        List<Product> products = findAll();
        products.forEach(product -> {
            productCache.putCache(product);
        });
    }


//    @PostConstruct
//    public void init(){
//        findOne("T001");
//    }

}

注解解析(常用)

  • @Cacheable:(开启缓存)

    • value=cacheNames

    • condition

    • key

      默认策略 自定义策略
      如果方法没有参数,则使用0作为key #参数名 #product.id
      如果只有一个参数的话则使用该参数作为key #p参数index #p0.id
      如果参数多于一个的话则使用所有参数的hashCode作为key  
  • CachePut(更新缓存)

    • 每次都会执行
  • CacheEvict(清空缓存)

    • allEntries:true的话就清空所有缓存数据
    • beforeInvocation:执行方法之前就清空缓存了

缓存维护

产品状态变化的时候,从审核中变成销售中的时候,销售端的缓存数据就应该添加产品,如果从销售中变成已完成就要从缓存中清除数据。做到随时更新到缓存中。

消息系统
  • Topic:发布订阅模式。有生产者和消费者,每个消费者都会收到所有的消息。
  • Queue:队列模式。一个消息只会给一个消费者使用。
  • 消费者分组(虚拟主题),是上面两种的结合体,下面会详细解释

框架

  • Kafka
  • ActiveMQ 安装使用简单
  • RocketMQ

使用方式不同但原理基本一致。

在manager模块中添加ProductStatusManager管理产品状态服务,一旦发生产品状态改变,则触发消息系统发送事件到目的地

@Component
public class ProductStatusManager {

    private static Logger LOG = LoggerFactory.getLogger(ProductStatusManager.class);

	//发送的目的地
    private static final String MQ_DESTINATION = "VirtualTopic.PRODUCT_STATUS";

    @Autowired
    private JmsTemplate jmsTemplate;

    public void changeStatus(String id, ProductStatus status){
        ProductStatusEvent event = new ProductStatusEvent(id,status);
        LOG.info("send message:{}",event);
        //目的地和事件对象
        jmsTemplate.convertAndSend(MQ_DESTINATION,event);
    }

//    @PostConstruct
//    public void init(){
//        changeStatus("T001",ProductStatus.IN_SELL);
//    }

}

在seller模块中的ProductRpcService中添加监听JMS消息的监听器

//监听的目的地址
private static final String MQ_DESTINATION = "Consumer.cache.VirtualTopic.PRODUCT_STATUS";

@JmsListener(destination = MQ_DESTINATION)     //接受状态改变的事件
void updateCache(ProductStatusEvent event){
	//首先要清除缓存,因为要重新读取数据,如果不清除空缓存会读取缓存中的数据
    LOG.info("receive event:{}",event);
    productCache.removeCache(event.getId());  //单个对象的缓存清除
    if(ProductStatus.IN_SELL.equals(event.getStatus())){
    	//如果是销售中的状态,读取缓存
        productCache.readCache(event.getId());  
    }

}
那么对于这里的MQ_DESTINATION的赋值和原理实现是怎样的呢?

Topic最大的限制就是同一个ClientId的订阅者,任何时刻只能有一个活跃。所以我们在分布式部署时,就会很麻烦,比如一个应用部署成多个实例,且它们都有相同的Topic Consumer配置,那么意味着一个实例部署成功后,其它的实例都会因为无法订阅Topic而导致故障;同时也意味着,如果这个Topic Consumer失效后,我们不能自动让其他Consumer的接管它。但是Queue却没有这些限制,因为Queue可以同时有任意多个消费者,它们可以并发的消费消息,从而实现“负载均衡”。如果我们期望Topic也能如此,那么可以用VirtualTopic。

VirtualTopic 是一种取Topic和Queue两种方式的结合方案,因为Topic满足一对多的需求,但是不能持久化;而Queue满足持久化,但是只能一对一,多队列又无法保证发送的一致性,不能做到一个订阅多个应用同时接收且持久化。

这时VirtualTopic 给出了较好的解决方案,对于生产者来说,VirtualTopic 是一个Topic,它发送订阅VirtualTopic.PRODUCT_STATUS,这时发出的是Topic则一对多但不持久,而broker端则将订阅同时发放给不同队列,对于消费者而言,broker处理的订阅是一个队列,如Consumer.cache1.VirtualTopic.PRODUCT_STATUS和Consumer.cache2.VirtualTopic.PRODUCT_STATUS,然后Consumer.cache1.VirtualTopic.PRODUCT_STATUS对应的是消费端1(订单),Consumer.cache2.VirtualTopic.PRODUCT_STATUS对应的是消费端2(结算),这样就满足了即能一对多又能持久化。


(转载本站文章请注明作者和出处 TiHom

Post Directory